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Abstract. This paper deals with generalized vector quasi-equilibrium problems. By virtue of
a nonlinear scalarization function, the gap functions for two classes of generalized vector
quasi-equilibrium problems are obtained. Then, from an existence theorem for a generalized
quasi-equilibrium problem and a minimax inequality, existence theorems for two classes of
generalized vector quasi-equilibrium problems are established.
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1. Introduction

Throughout this paper, let X, V and Z be three locally convex Hausdorff
topological spaces, E be a nonempty, compact and convex subset of X and D
be a nonempty, compact subset of Z. We also assume that C:X→2V is a set-
valued mapping such that C(x) is a proper, closed and convex cone of V
with intC(x) �=∅, for each x∈X. A vector-valued mapping e: X→V is said
to be a continuous selection from intC(·) if for any x ∈X, e(x)∈ intC(x).
Let K: E→2E be a set-valued mapping with closed values, Q: E→2D and
F : E×D×E→2V be two set-valued mapping.

Consider two classes of generalized vector quasi-equilibrium problems of
finding x̄ ∈E and z̄∈Q(x̄) such that

(GVQEP1) x̄ ∈K(x̄) and F(x̄, z̄, y)⊆V \− intC(x̄), ∀y ∈K(x̄),
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and of finding x̃ ∈E and z̃∈Q(x̃) such that

(GVQEP2) x̃ ∈K(x̃) and F(x̃, z̃, y)⊂−C(x̃), ∀y ∈K(x̃).

It is well known that the vector equilibrium problem provides a uni-
fied model of several classes of problems, for example, vector variational
inequality problems, vector complementarity problems, vector optimization
problems and vector saddle point problems. Many authors have intensively
studied different types of vector equilibrium problems (see Refs. [1, 5, 8,
10, 11]).

The gap function approach is an important research method in varia-
tional inequality. One advantage of the introduction of gap functions in
variational inequalities is that variational inequalities can be transformed
into optimization problems. Then, powerful optimization solution meth-
ods and algorithms can be applied for finding solutions of variational
inequalities.

Recently, some authors have investigated the gap functions for vector
variational inequalities. In Ref. [4], Chen et al. introduced two set-valued
functions as gap functions for two classes of vector variational inequality.
In Ref. [11], Li et al. studied differential and sensitivity properties of the
two classes of gap functions for vector variational inequalities and got an
explicit expression of their contingent derivatives. In Ref. [14], Yang and
Yao introduced two real-valued functions as gap functions for two classes
of finite dimensional vector variational inequalities with set-valued map-
ping under Pareto partial order. From the computational point of view,
the latter is more useful. In Ref. [13], Yang also investigated the gap func-
tion for a finite dimensional extended weak vector prevariational inequality.
However, up to now, there is not any paper to investigate the gap func-
tions for the problems (GVQEP1) and (GVQEP2). There are two main
reasons: (1) Domination structure C(x) of (GVQEP1) and (GVQEP2) is
not fixed. It is a set-valued mapping of variable x such that C(x) is a
proper, closed and convex cone of V with intC(x) �= ∅, for each x ∈X.
(2) (GVQEP1) and (GVQEP2) shall be discussed in general locally convex
Hausdorff topological space, but not in finite dimensional space. The meth-
ods used for generating the gap functions of finite dimensional vector var-
iational inequalities cannot be directly used to generate the gap functions
of (GVQEP1) and (GVQEP2).

In this paper, we shall first use the nonlinear scalarization function
defined by Chen et al. [5] to introduce two real-valued functions. Then, we
prove the two function are gap functions of (GVQEP1) and (GVQEP2),
respectively. Finally, we obtain existence of solutions for (GVQEP1) and
(GVQEP2) by using Theorem 3.1 in Ref. [11], Theorem 4 in Ref. [7] and
the nonlinear scalarization function.
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The rest of the paper is organized as follows. In Section 2, we recall
some basic definitions, a minimax inequality theorem and an existence
theorem for a generalized quasi-equilibrium problem. In Sections 3, we
investigate the gap functions for (GVQEP1) and (GVQEP2), respectively.
In Section 4, we show existence results for (GVQEP1) and (GVQEP2),
respectively.

2. Preliminary Results

In this section, we shall recall the definitions of convex properties for
set-valued mappings and of a nonlinear scalarization function and some
results used in the following sections.

DEFINITION 2.1. Let G:E×D→2V be a set-valued mapping.

(1) G(x, ·) is said to be C(x)-convex on D for a fixed x ∈ E if, for any
y1, y2 ∈D and λ∈ (0,1),

λG(x, y1)+ (1−λ)G(x, y2)⊆G(x,λy1 + (1−λ)y2)+C(x).

(2) G(x, ·) is said to be C(x)-properly quasi-convex on D for a fixed
x∈E if, for any y1, y2 ∈D, λ∈ (0,1) and v∈G(x,λy1 + (1−λ)y2) there
exists v1 ∈G(x, y1) or v2 ∈G(x, y2) such that

v∈v1 −C(x) or v∈v2 −C(x).

(3) G(x, ·) is said to be C(x)-properly quasi-concave on D for a fixed
x ∈E if −G(x, ·) is C(x)-properly quasi-convex on D.

Let e:X → V be a vector-valued mapping and, for any x ∈ X,e(x) ∈
intC(x).

DEFINITION 2.2. The nonlinear scalarization function ξe:X × V → R is
defined by

ξe(x, y)= inf{λ∈R|y ∈λe(x)−C(x)}.

THEOREM 2.1 (Theorem 2.1 [5]). Let X and V be two locally convex
Hausdorff topological vector spaces, and let C:X→2V be a set-valued map-
ping such that, for each x ∈ X, C(x) is a proper, closed, convex cone in
V with intC(x) �= ∅. Furthermore, let e:X → V be a continuous selection
from the set-valued map intC(·). Define a set-valued mapping W :X→2V by
W(x)=V \intC(x), for x ∈X. Then, it holds that
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(i) If W(·) is upper semi-continuous on X, then ξe(·, ·) is upper semi-
continuous on X×V ,

(ii) If C(·) is upper semi-continuous on X, then ξe(·, ·) is lower semi-
continuous on X×V .

Note that for the detailed definitions of lower and upper semi-continuities
and continuity of set-valued mappings, see Aubin and Ekeland [2, pp.
108–110].

THEOREM 2.2 (Theorem 4[7]). Let E and D be nonempty convex, com-
pact subsets of X and V , respectively. If g:E × D → R a lower semi-
continuous function on E×D such that

(i) for any x ∈E,g(x, ·) is quasi-concave on D;
(ii) for any y ∈D, g(·, y) is quasi-convex on E.

Then,

min
x∈E

sup
y∈D

g(x, y)= sup
y∈D

min
x∈E

g(x, y).

THEOREM 2.3. Suppose that the following conditions hold:

(i) K:E→ 2E is a continuous mapping with compact and convex values
on E;

(ii) ψ :E×E→R is upper semi-continuous on E×E;
(iii) For any x ∈E,ψ(x, x)�0;
(iv) For every fixed x ∈E, ψ(x, ·) is quasi-convex on E.

Then, there exists an x̄ ∈E such that

x̄ ∈K(x̄) and ψ(x̄, y)�0, ∀y ∈K(x̄).
Proof. From the proof process of Theorem 3.1 in Ref. [11], this result

holds.

3. Gap Functions for (GVQEP1) and (GVQEP2)

In this section, we shall obtain gap functions for (GVQEP1) and (GVQEP2)
using the nonlinear scalarization function. Set

K̃={x ∈E |x ∈K(x)}.
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DEFINITION 3.1. g: K̃→R is said to be a gap function of (GVQEP1) or
(GVQEP2) if

(i) g(x)�0, ∀x ∈ K̃,
(ii) g(x̄)=0 if and only if x̄ is a solution of (GVQEP1) or (GVQEP2).

Let F :E ×D ×E→ 2V be a set-valued mapping with compact values.
Then, we may introduce respectively the mappings φ(x, z, y): K̃×D×K̃→R
and ϕ(x, z, y): K̃×D× K̃→R as follows:

φ(x, z, y)= min
v∈F(x,z,y)

ξe(x, v),

and

ϕ(x, z, y)= max
v∈F(x,z,y)

ξe(x, v).

LEMMA 3.1. Suppose that, for every fixed x ∈ K̃, F(x, ·, ·) is a lower semi-
continuous set-valued mapping with compact values on D× K̃ and K:E→2E

is a set-valued mapping with closed values on K̃. Then, for every fixed x∈ K̃,
maxy∈K(x)[−φ(x, ·, y)] and maxy∈K(x) ϕ(x, ·, y) are all lower semi-continuous
on D.

Proof. Since, for every fixed x ∈ K̃, F(x, ·, ·) is a lower semi-continuous
set-valued mapping on D × K̃, it follows from Proposition 19 in Sec-
tion 3 of Chapter 1 [2] that φ(x, ·, ·) is upper semi-continuous on D ×
K̃ for every fixed x ∈ K̃. Then, we have that maxy∈K(x)[−φ(x, ·, y)] is
lower semi-continuous on D. Similarly, from the lower semi-continuity
of F(x, ·, ·) for every fixed x ∈ K̃, we have that ϕ(x, ·, ·) is lower semi-
continuous on D× K̃ for every fixed x ∈ K̃. Thus, we have that maxy∈K(x)
ϕ(x, ·, y) is lower semi-continuous on D.

Furthermore, suppose that Q:E → 2D is a set-valued mappings with
closed values. Then, from Lemma 3.1, we may introduce two real-valued
functions g1 and g2 from K̃ to R as follows:

g1(x)=− min
z∈Q(x)

max
y∈K(x)

[−φ(x, z, y)], (1)

and

g2(x)=− min
z∈Q(x)

max
y∈K(x)

ϕ(x, z, y). (2)

Now we shall prove that g1(x) and g2(x) are gap functions for (GVQEP1)
and (GVQEP2), respectively.
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THEOREM 3.1. Suppose that, for every fixed x ∈ K̃, F(x, ·, ·) is a lower
semi-continuous set-valued mapping with compact values on D × K̃ and
K:E→2E and Q:E→2D are two set-valued mappings with closed values on
K̃. If F(x, z, x)∩−∂C(x) �=∅,∀x∈ K̃ and z∈Q(x), then g1(x) defined by (1)
is a gap function of (GVQEP1).

Proof. Since F(x, z, x)∩ −∂C(x) �= ∅,∀x ∈ K̃ and z∈Q(x), there exists a
wxz ∈F(x, z, x) such that wxz ∈−∂C(x). It follows from Proposition 2.3(v)
in Ref. [5] that

ξe(x,wxz)=0.

Then,

min ξe(x,F (x, z, x))�0, ∀x ∈ K̃ and z∈Q(x).

Naturally,

max
y∈K(x)

[−min ξe(x,F (x, z, y))]�0, ∀x ∈ K̃ and z∈Q(x),

and

min
z∈Q(x)

max
y∈K(x)

[−min ξe(x,F (x, z, y))]�0, ∀x ∈ K̃.

So,

g1(x)�0, ∀x ∈ K̃. (3)

Now suppose that there exists x̄ ∈ K̃ such that g1(x̄)= 0. It follows from
Lemma 3.1 that there exists a z̄∈Q(x̄) such that

g1(x̄)=− max
y∈K(x̄)

[−min ξe(x̄, F (x̄, z̄, y))]=0,

namely,

min ξe(x̄, F (x̄, z̄, y))�0, ∀y ∈K(x̄).

From Proposition 2.3(iii) in Ref. [5], we have

v �∈−intC(x̄), ∀v∈F(x̄, z̄, y) and y ∈K(x̄),

namely,

F(x̄, z̄, y)⊂V \− intC(x̄), ∀y ∈K(x̄).
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Thus, (x̄, z̄) is a solution of (GVQEP1).
Conversely, suppose that (x̄, z̄) is a solution of (GVQEP1). It follows

from Proposition 2.3 in Ref. [5] that

ξe(x̄, v)�0, ∀v∈F(x̄, z̄, y) and y ∈K(x̄).
Then, we have

max
y∈K(x̄)

[−min ξe(x̄, F (x̄, z̄, y))]�0,

min
z∈Q(x̄)

max
y∈K(x̄)

[−min ξe(x̄, F (x̄, z, y))]�0,

and

g1(x̄)�0. (4)

It follows from (3) and (4) that

g1(x̄)=0.

Thus, the mapping g1(x) is a gap function of (GVQEP1).

THEOREM 3.2. Suppose that, for every fixed x ∈ K̃, F(x, ·, ·) is a lower
semi-continuous set-valued mapping with compact values on D × K̃ and
K:E→2E and Q:E→2D are two set-valued mappings with closed values on
K̃. If F(x, z, x)∩−∂C(x) �=∅,∀x∈K̃ and z∈Q(x), then g2(x) defined by (2)
is a gap function of (GVQEP2).

Proof. Similar to the proof of Theorem 3.1, by F(x, z, x)∩−∂C(x) �= ∅,
∀x ∈ K̃ and z∈Q(x), there exists a wxz ∈F(x, z, x) such that

ξe(x,wxz)=0.

Then,

max ξe(x,F (x, z, x))�0, ∀x ∈ K̃ and z∈Q(x),
and

g2(x)=− min
z∈Q(x)

max
y∈K(x)

max ξe(x,F (x, z, y))�0, ∀x ∈ K̃. (5)

Suppose that there exists x̄∈ K̃ such that g2(x̄)=0. It follows from Lemma
3.1 that there exists a z̄∈Q(x̄) such that

g2(x̄)=− max
y∈K(x̄)

max ξe(x̄, F (x̄, z̄, y))=0,
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namely,

max ξe(x̄, F (x̄, z̄, y))�0, ∀y ∈K(x̄).

From Proposition 2.3(ii) in Ref. [5], we have

F(x̄, z̄, y)⊂−C(x̄), ∀y ∈K(x̄).

Thus, (x̄, z̄) is a solution of (GVQEP2).
Conversely, suppose that (x̄, z̄) is a solution of (GVQEP2). It follows

from Proposition 2.3(ii) in Ref. [5] that

ξe(x̄, v)�0, ∀v∈F(x̄, z̄, y) and y ∈K(x̄).

Then, we have

g2(x̄)�0. (6)

It follows from (5) and (6) that

g2(x̄)=0.

Thus, the mapping g2(x) is a gap function of (GVQEP2).

Remark 3.1. In the paper [14], Yang and Yao investigated the gap func-
tion of the vector variational inequality (VVI) with a set-valued mapping
T , which consists of finding x̄ ∈K and t̄ ∈T (x̄) such that

〈t̄ , y− x̄〉 �∈−int Rl
+, ∀y ∈K, (7)

where T :X→2L(X,R
l ) is a set-valued mapping with a compact set T (x) for

each x and K⊂X is a compact set.
Suppose that C(x)≡Rl

+, K(x)≡K,∀x∈E and Z=L(X,Rl). Let Q(x)≡
T (x),∀x ∈E and F(x, z, y)= 〈z, y − x〉, for any x, y ∈E and z∈D. Then,
(GVQEP1) reduces the (VVI) with a set-valued mapping (7). Naturally, all
assumptions of Theorem 3.1 are satisfied. We have that K̃=K,

φ(x, z, y)= ξe(x, 〈z, y−x〉),

and

g1(x)= max
z∈T (x)

min
y∈K

ξe(x, 〈z, y−x〉).
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Take e= (1, . . . ,1)T ∈ intRl
+. It follows from [3] that

ξe(v)= min
1�i�l

vi .

We have

g1(x)= max
z∈T (x)

min
y∈K

min
1�i�l

(〈z, y−x〉i),

where 〈z, y − x〉i is the ith component of 〈z, y − x〉. Then g1(x) is equal
to the gap function g(x) introduced by Yang and Yao [14]. Thus, the gap
function g1(x) is a generalization of one in Ref. [14].

4. Existences of Solutions for (GVQEP1) and (GVQEP2)

In this section, we shall use Theorems 2.2 and 2.3 and the nonlinear sca-
larization function to prove the existences of solutions for (GVQEP1) and
(GVQEP2).

THEOREM 4.1. Suppose that the following conditions hold:

(i) W(·)= V \intC(·) is upper semi-continuous on X and intC(·) has a
continuous selection e(·);

(ii) K:E→2E is continuous on E and Q:E→2D is upper semi-continuous
on E. For every x∈E, K(x) and Q(x) are compact and convex sets in
X and Z, respectively;

(iii) F :E×D×E→ 2V is a lower semi-continuous mapping with compact
values on E×D×E;

(iv) For any x ∈E, there exists a zx ∈Q(x), F(x, zx, x)⊆V \− intC (x);
(v) For every fixed x ∈E and z∈Q(x), F(x, z, ·) is C(x)-convex;

(vi) For every fixed x ∈E and y ∈K(x), F(x, ·, y) is C(x)-properly quasi-
concave;

Then, there exist an x̄ ∈E and a z̄∈Q(x̄) such that

x̄ ∈K(x̄) and F(x̄, z̄, y)⊆V \−intC(x̄), ∀y ∈K(x̄). (8)
Proof. Suppose that

ψ(x, y)= max
z∈Q(x)

{
min ξe(x,F (x, z, y))

}
.

Now we prove that ψ(x, y) satisfies the conditions of Theorem 2.3.

(1) ψ :E×E→R is upper semi-continuous on E×E.
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By assumption (i) and Theorem 2.1(i), we have that ξe(x, v) is upper
semi-continuous on X×V . Naturally, if we consider the ξe(x, v) as a
function of the variable (x, z, y, v), ξe is also upper semi-continuous
on X×Z ×X× V . It follows from the assumption (iii) and Propo-
sition 19 in Section 1 of Chapter 3 [2] that min ∪v∈F(x,z,y)ξe(x, v) is
upper semi-continuous on E×D×E. Thus, from the assumption (i)
and Proposition 20 in Section 1 of Chapter 3 [2], we have that ψ(x, y)
is upper semi-continuous on E×E.

(2) For every fixed x ∈E, ψ(x, ·) is convex on E.
Since F(x, z, y) is a compact set for any y∈E and z∈D and ξe(x, ·) is
continuous on V , ξe(x,F (x, z, y)) is a compact set for any y∈E. Sup-
pose that y1, y2 ∈E and λ∈ (0,1). Then, there exists a v1z∈F(x, z, y1)

and v2z ∈F(x, z, y2) such that

ξe(x, v1z)=min ξe(x,F (x, z, y1)),

and

ξe(x, v2z)=min ξe(x,F (x, z, y2)).

From the C(x)-convexity of F(x, z, ·), there exist vz ∈ F(x, z, λy1 +
(1−λ)y2) and cz ∈C(x) such that

λv1z+ (1−λ)v2z=vz+ cz.

It follows from Ref. [5] that

λξe(x, v1z)+ (1−λ)ξe(x, v2z)� ξe(x, λv1z+ (1−λ)v2z)

� ξe(x, vz)
�min ξe(x,F (x, z, λy1 + (1−λ)y2)),

namely,

λmin ξe(x,F (x, z, y1))+ (1−λ)min ξe(x,F (x, z, y2))

�min ξe(x,F (x, z, λy1 + (1−λ)y2)).

Thus, ψ(x, ·) is convex on E.
(3) For any x ∈E,ψ(x, x)�0.

By the assumption (iv) and Proposition 2.3(iii) in Ref. [5], we have
that, for any x ∈E, there exists zx ∈Q(x) such that

ξe(x, v)�0, ∀v∈F(x, zx, x).
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Thus,

min ξe(x,F (x, zx, x))�0,

and

ψ(x, x)= max
z∈Q(x)

min ξe(x,F (x, z, x))�0, ∀x ∈E.

So, by Theorem 2.3, there exists x̄ ∈E such that

x̄ ∈K(x̄) and ψ(x̄, y)�0, ∀y ∈K(x̄). (9)

Then, we have

min
y∈K(x̄)

ψ(x̄, y)�0,

namely,

inf
y∈K(x̄)

max
z∈Q(x̄)

(
min ξe(x̄, F (x̄, z, y))

)
�0. (10)

Now we prove that the function −min ξe(x̄, F (x̄, ·, ·)) satisfies assumptions
of Theorem 2.2.

(a) It follows from the proof process of the previous (1) that
−min ξe(x̄, F (x̄, ·, ·)) is lower semi-continuous on Q(x̄)×K(x̄).

(b) From the proof process of the previous (2), we have that
−min ξe(x̄, F (x̄, z, ·)) is concave on K(x̄) for every z∈Q(x̄).

(c) For every fixed y ∈K(x̄), we have that −min ξe(x̄, F (x̄, ·, y)) is quasi-
convex on Q(x̄) for every y ∈K(x̄).

In fact, we only need to prove that min ξe(x̄, F (x̄, ·, y)) is quasi-concave
on Q(x̄). Suppose that z1, z2 ∈ E and λ ∈ (0,1). Then, there exists vz ∈
F(x̄, λz1 + (1−λ)z2, y) such that

ξe(x̄, vz)=min ξe(x̄, F (x̄, λz1 + (1−λ)z2), y).

It follows from the C(x̄)-properly quasi-concavity of F(x̄, ·, y) that there
exists vz1 ∈F(x̄, z1, y) or vz2 ∈F(x̄, z2, y) such that

vz ∈vz1 +C(x̄) or vz ∈vz2 +C(x̄).

Then,

ξe(x̄, vz)� ξe(x̄, vz1) or ξe(x̄, vz)� ξe(x̄, vz2).
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Thus, we have

ξe(x̄, vz)�min ξe(x̄, F (x̄, z1, y)) or ξe(x̄, vz)�min ξe(x̄, F (x̄, z2, y)),

namely, min ξe(x̄, F (x̄, ·, y)) is quasi-concave on Q(x̄).
So, by Theorem 2.2, we get

sup
y∈K(x̄)

min
z∈Q(x̄)

(−min ξe(x̄, F (x̄, z, y))
)= min

z∈Q(x̄)
sup
y∈K(x̄)

(−min ξe(x̄, F (x̄, z, y))
)
,

i.e.,

inf
y∈K(x̄)

max
z∈Q(x̄)

(
min ξe(x̄, F (x̄, z, y))

)= max
z∈Q(x̄)

inf
y∈K(x̄)

(
min ξe(x̄, F (x̄, z, y))

)
.

By (10), we have

max
z∈Q(x̄)

inf
y∈K(x̄)

(
min ξe(x̄, F (x̄, z, y))

)
�0.

Since min ξe(x̄, F (x̄, ·, ·)) is upper semi-continuous on E × D, inf y∈K(x̄)
(min ξe(x̄, F (x̄, ·, y))) is upper semi-continuous on D. Then, there exists z̄∈
Q(x̄) such that

min ξe(x̄, F (x̄, z̄, y))�0, ∀y ∈K(x̄).
It follows from Proposition 2.3(iii) in Ref. [5] that

F(x̄, z̄, y)⊆V \−intC(x̄), ∀y ∈K(x̄). (11)

Thus, by (9) and (11), the proof is complete.

Remark 4.1. Suppose that F(·, ·, ·)=f (·, ·, ·) is a vector-valued function.
In Ref. [5], Chen et al. discussed the following generalized quasi-equilibrium
problem (GQEP):

Find x̄ ∈K(x̄) and z̄∈Q(x̄) such that

f (x̄, z̄, x̄)−f (x̄, z̄, y) �∈ intC(x̄), ∀y ∈K(x̄).
By using Fan–Glicksber–Kakutani fixed point theorem and nonlinear sca-
larization function ξ , they proved an existence theorem of solutions for
(GQEP). In this paper, by the virtue of Ky Fan minimax inequality
(Theorem 2.2), the existence theorem of solutions for generalized quasi-
variational inequality (Theorem 2.3) and nonlinear scalarization function
ξ , we obtain an existence theorem for (GVQEP1) (Theorem 4.1). Although
the two papers use all nonlinear scalarization function ξ to prove their exis-
tence theorems respectively, the conditions that the two existence theorems
hold and proof methods are different.
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Now we prove the existence of a solution for (GVQEP2).

THEOREM 4.2. Suppose that the following conditions hold:

(i) C:X→2Z is upper semi-continuous on X and intC(·) has a continuous
selection e(·);

(ii) K:E→2E is continuous on E and Q:E→2D is upper semi-continuous
on E. For every x∈E, K(x) and Q(x) are compact and convex sets in
X and Z, respectively;

(iii) F :E×D×E→ 2V is a lower semi-continuous mapping with compact
values on E×D×E;

(iv) For any x ∈E, there exists a zx ∈Q(x), F(x, zx, x)⊆−C(x);
(v) For every fixed x ∈ E and z ∈ Q(x), max ξe(x,F (x, z, ·)) is quasi-

concave;
(vi) For every fixed x ∈E and y ∈K(x), F(x, ·, y) is C(x)-properly quasi-

convex;

Then, there exist an x∗ ∈E and a z∗ ∈Q(x∗) such that

x∗ ∈K(x∗) and F(x∗, z∗, y)⊆−C(x∗), ∀y ∈K(x∗). (12)
Proof. Suppose

ω(x, y)=− min
z∈Q(x)

(max ξe(x,F (x, z, y))) .

Following the proof process for (1)–(3) of Theorem 4.1, we have that
ω(x, y) satisfies all assumptions of Theorem 2.3. Then, there is an x∗ ∈E
such that

x∗ ∈K(x∗) and ω(x∗, y)�0, ∀y ∈K(x∗), (13)

i.e.,

sup
y∈K(x∗)

min
z∈Q(x∗)

(
max ξe(x∗,F (x∗, z, y))

)
�0. (14)

Following the proof process for (a) and (c) of Theorem 4.1, we get that
max ∪v∈F(x∗,z,y)ξe(x

∗, v) satisfies the assumptions of Theorem 2.2. It follows
from (14) that

min
z∈Q(x∗)

sup
y∈K(x∗)

(
max ξe(x∗,F (x∗, z, y))

)
�0.
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By the lower semi-continuity of max ξe(x∗,F (x∗, ·, ·)), supy∈K(x∗)(max ξe(x∗,
F (x∗, ·, y))) is lower semi-continuous on D. Then, by (13) and Proposi-
tion 2.3(ii) in Ref. [5], there exists z∗ ∈Q(x∗) such that

x∗ ∈K(x∗) and z∈−C(x∗), ∀y ∈K(x∗) and z∈F(x∗, z∗, y).

Thus, (12) holds and this completes the proof.

Remark 4.2. If, for each fixed x ∈E and y ∈K(x), −F(x, ·, y) is C(x)-
properly quasi-convex introduced in Ref. [9] on E, then, max ξe(x,F (x, ·, y))
is quasi-concave on E. However, the converse relation may not hold.
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